
Optimization of Query Processing Time Base on
Materialized Sample View

Mahip Bartere and Dr. Prashant Deshmukh

Computer Science Department, Sipna College of Engineering and Technology,Amravati, Maharashtra, India.

Abstract-Sample views created from the database tables are
useful in many applications for reducing retrieval time. A
sample view is an indexed materialized view that permits
efficient sampling from an arbitrary range query over the view.
Such “sample views” are very useful in applications that
require random samples from a database: Approximate query
processing, online aggregation, data mining, and randomized
algorithms are a few examples. The Appendability,
Combinability, and Exponentiality (ACE) Tree is a new file
organization technique that is suitable for organizing and
indexing a sample view. One of the most important aspects of
the ACE Tree is that it supports online random sampling from
the view. That is, at all times, the set of records returned by the
ACE Tree constitutes a statistically random sample of the
database records satisfying the relational selection predicate
over the view.

Keywords- ACE Tree, Materialized View, Query Processing.

I INTRODUCTION

Database sampling has been recognized as an important
problem that the International Organization for
Standardization (ISO) has been working to develop a
standard interface for sampling from relational database
systems[1], and significant research efforts are directed at
providing sampling from database systems by vendors such
as IBM . However, despite the obvious importance of
random sampling in a database environment and dozens of
recent papers on the subject, there has been relatively little
work toward actually supporting random sampling with
physical database file organizations. The classic work in this
area [by Olken and Rotem] suffers from drawback. With the
ever-increasing database sizes, randomization and
randomized algorithms[2] have become vital data
management tools. In particular, random sampling is one of
the most important sources of randomness for such
algorithms. Scores of algorithms that are useful over large
data repositories either require a randomized input ordering
for data (i.e. an online random sample) or operate over
samples of the data to increase the speed of the algorithm.
For example, in online aggregation[3], database records are
processed one at a time and are used for keeping the user
informed of the current “best guess” as to the eventual
answer to the query. If the records are input into the online
aggregation algorithm in a randomized order, then it
becomes possible to give probabilistic guarantees on the
relationship of the current guess to the eventual answer to
the query. Data mining algorithms like scalable K-Means[4]
clustering and frequent item set mining are applicable only if
the data are processed in a randomized order. In general, it is
often possible to scale data mining and machine learning

techniques by incorporating samples into a learned model one at
a time until the marginal accuracy of adding an additional sample
into the model is small. Materialized views defined over
distributed data sources are critical for many applications to
ensure efficient access, reliable performance, and high
availability. This work deals with efficient optimization of query
with the help of materialized view over the distributed network.
Materialized views need to be maintained upon source updates
since stale view extents may not serve well or may even mislead
user applications. Thus, view maintenance performance is one of
the keys to the success of these applications [5].
There are several benefits of Materialized View such as
• Less writes
• Decreased CPU consumption
• Markedly faster response times
• Less physical reads
• Materialized Views offer us flexibility of basing a view on

Primary key
• Users, Applications, Developers and others can take advantage

of the fact that the answer has already been stored for them.
• Tools such as the DBMS_OLAP Package allow for easier

maintenance.
• In a read-only / read-intensive environment will provide

reduced query response time and reduced resources needed
to actually process the queries.

II PRESENT THEORIES AND PRACTICES

Database sampling has been recognized as an important problem
that the International Organization for Standardization (ISO) has
been working to develop a standard interface for sampling from
relational database systems[1], and significant research efforts
are directed at providing sampling from database systems by
vendors such as IBM . However, despite the obvious importance
of random sampling in a database environment and dozens of
recent papers on the subject, there has been relatively little work
toward actually supporting random sampling with physical
database file organizations. The classic work in this area [by
Olken and Rotem] suffers from drawback. With the ever-
increasing database sizes, randomization and randomized
algorithms[2] have become vital data management tools. In
particular, random sampling is one of the most important sources
of randomness for such algorithms. Scores of algorithms that are
useful over large data repositories either require a randomized
input ordering for data (i.e. an online random sample) or operate
over samples of the data to increase the speed of the algorithm.
For example, in online aggregation[3], database records are
processed one at a time and are used for keeping the user
informed of the current “best guess” as to the eventual answer to
the query. If the records are input into the online aggregation

Mahip Bartere et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1222-1228

1222

algorithm in a randomized order, then it becomes possible to
give probabilistic guarantees on the relationship of the
current guess to the eventual answer to the query. Data
mining algorithms like scalable K-Means[4] clustering and
frequent item set mining are applicable only if the data are
processed in a randomized order. In general, it is often
possible to scale data mining and machine learning
techniques by incorporating samples into a learned model
one at a time until the marginal accuracy of adding an
additional sample into the model is small.
Materialized views defined over distributed data sources are
critical for many applications to ensure efficient access,
reliable performance, and high availability. This work deals
with efficient optimization of query with the help of
materialized view over the distributed network. Materialized
views need to be maintained upon source updates since stale
view extents may not serve well or may even mislead user
applications. Thus, view maintenance performance is one of
the keys to the success of these applications [5].

III SYSTEM ARCHITECHTURE

The materialized sample view can be used as a convenient
abstraction for allowing efficient random sampling from a
database. For example, consider the following database
schema:
SALE (DAY, CUST, PART, SUPP) To support fast random
sampling from this table, and most of queries include a
temporal range predicate on the DAY attribute. This is
exactly the interface provided by a materialized sample
view. A materialized sample view can be specified with the
following SQL-like query: CREATE MATERIALIZED
SAMPLE VIEW MyVw AS SELECT * FROM SALE
INDEX ON DAY.
Although the materialized sample view is a straightforward
concept, an efficient implementation is difficult. The
primary objective is to index data using properties
Appendability, Combinability, and Exponentiality (ACE),
which can be used for efficiently implementing a
materialized sample view. The proposed work will be based
on ACE tree traversal algorithm. The following issues will
be considered in the dissertation work:
1. Initially two phases will be implemented. In the first

phase the data set is sorted based on the record key values.
This sorted order of records is used for providing the split
points associated with each internal node in the tree.

2. In the second phase the data are organized into leaf nodes
based on those key values. Disk blocks corresponding to
groups of internal nodes can easily be constructed at the
same time as the final pass through the data writes the leaf
nodes to the disk.

3. ACE trees can be extended to support the queries that
include multidimensional predicates. K-d binary trees can
be useful for that purpose instead of binary trees.

4. Instead of using simple arrays for storing node
information other data structures can be useful to improve
the performance of overall process.

Following flow chart shows how the execution takes place

F

Fig 1 . Architecture of system of query optimization

During the implementation, these views have the following
characteristics.
1.It is possible to efficiently sample views (without replacement)

from any arbitrary range query over the indexed attribute at
a rate that is far faster than is possible by using other
techniques or by scanning a randomly permuted file. In
general, the view can produce samples from a predicate
involving any attribute having a natural ordering, and a
straightforward extension of the ACE Tree. Which can be
used for sampling from multidimensional predicates.

2 .The resulting sample is online, which means that new samples
are returned continuously as time progresses and in a manner
such that at all times, the set of samples returned is a true
random sample of all of the records in the view that match
the range query. This is vital for important applications like
online aggregation and data mining.

3. Finally, the sample view created efficiently, requiring only two
external sorts of the records in the view and with only a very
small space overhead beyond the storage required for the
data records.

 Initially user logs in to ACE processing system. Then selects the
node for which sample views are to be created. The selection of
node will be from the available node list. Then user will be
connected to the database for which DSN’s are created for that
node. Then user gathers all the tables available in the database.
User selects a table. After selecting table ACE shows all fields in
the table. Then user selects number of fields on which views are
to be created. After user selects generate sample view. Now the
sample views are generated using ACE algorithm. After
generating sample views user can fire query using sample views
or without using sample views. The appropriate results will be

Database Table

Query Query Query

ResultResult Result

Sample Views Sample Views Sample Views

Mahip Bartere et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1222-1228

1223

showed to user. The required for processing will be
displayed to user and comparison will be carried out.

IV. ACE TREE AND MATERIALIZED VIEWS

We propose an entirely different strategy for implementing a
materialized sample view. Our strategy uses a new data
structure called the ACE Tree to index the records in the
sample view. At the highest level, the ACE Tree partitions a
data set into a large number of different random samples
such that each is a random sample without replacement from
one particular range query. When an application asks to
sample from some arbitrary range query, the ACE Tree and
its associated algorithms filter and combine these samples so
that very quickly, a large and random subset of the records
satisfying the range query is returned. The sampling
algorithm of the ACE Tree is an online algorithm, which
means that as time progresses, a much larger sample is
produced by the structure. At all times, the set of records
retrieved is a true random sample of all the database records
matching the range selection predicate.

A. ACE TREE
Logically, the ACE Tree is a disk-based binary tree data
structure with internal nodes used for indexing leaf nodes,
and leaf nodes used for storing the actual data. Since the
internal nodes in a binary tree are much smaller than disk
pages, they are packed and stored together in disk-page sized
units [19]. Each internal node has the following components:
1. A range R of key values associated with the node.
2. A key value k that splits R and partitions the data on the
left and right of the node.
3. Pointers ptrl and ptrr, which point to the left and right
children of the node.
4. Counts cntl and cntr, which give the number of database
records falling in the ranges associated with the left and right
child nodes. These values can be used during the evaluation
of online aggregation queries, which require the size of the
population from which we are sampling[4].
Fig. 2 shows the logical structure of the ACE Tree. Ii;j refers
to the jth internal node at level i. The root node is labeled
with a range I1,1.R =[0 – 100], signifying that all records in
the data set have key values within this range. The key of the
root node partitions I1,1.R into I2,1.R=[0–50] and I2,2.R=[51 –
100]. Similarly, each internal node divides the range of its
descendents with its own key.
The ranges associated with each section of a leaf node are
determined by the ranges associated with each internal node
on the path from the root node to the leaf. For example, if we
consider the path from the root node down to leaf node L4,
the ranges that we encounter along the path are 0-100, 0-50,
26-50, and 38-50.
Thus, for L4, L4:S1 has a random sample of records in the
range 0-100, L4:S2 has a random sample in the range 0-50,
L4:S3 has a random sample in the range 26-50, whereas
L4:S4 has a random sample in the range 38-50.

Fig 2 Structure of ACE Tree
B. EXAMPLE OF ACE TREE
In the following discussion, we demonstrate how the ACE Tree
efficiently retrieves a large random sample of records for any
given range query. The query algorithm is formally described in
next section.
Let Q =[30 - 65] be our example query postulated over the ACE
Tree depicted in Fig. 2. The query algorithm starts at I1,1, which
is the root node. Since I2,1.R overlaps Q, the algorithm decides to
explore the left child node labeled I2,1 in Fig. 2. At this point, the
two range values associated with the left and right children of I2,1
are 0-25 and 26-50. Since the left child range has no overlap with
the query range, the algorithm chooses to explore the right child
next. At this child node I3,2, the algorithm picks leaf node L3 to
be the first leaf node retrieved by the index. Records from section
1 of L3 (which totally encompasses Q) are filtered for Q and
returned immediately to the consumer of the sample as a random
sample from the range [30-65], whereas records from sections 2,
3, and 4 are stored in memory. Fig. 3 shows the one random
sample from section 1 of L3, which can be used directly for
answering query Q.
Next, the algorithm again starts at the root node and now chooses
to explore the right child node I2,2. After performing range
comparisons, it explores the left child of I2,2, which is I3,3, since
I3,4.R has no overlap with Q. The algorithm chooses to visit the
left child node of I3,3 next, which is leaf node L5. This is the
second leaf node to be retrieved.

Fig.3 Random samples from section 1 of L3.

Mahip Bartere et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1222-1228

1224

As depicted in Fig. 4, since L5.R1 encompasses Q, the
records of L5.S1 are filtered and returned immediately to the
user as two additional samples from R. Furthermore, section
2 records are combined with the section 2 records of L3 to
obtain a random sample of records in the range 0-100.

Fig. 4. Combining samples from L3 and L5.

These are again filtered and returned, giving four more
samples from Q. Section 3 records are also combined with
the section 3 records of L3 to obtain a sample of records in
the range 26-75. Since this range also encompasses R, the
records are again filtered and returned, adding four more
records to our sample. Finally, section 4 records are stored in
memory for later use. Note that after retrieving just two leaf
nodes in our small example, the algorithm obtains 11
randomly selected records from the query range. However,
in a real index, this number would be many times greater.
Thus, the ACE Tree supports “fast first” sampling from a
range predicate: a large number of samples are returned very
quickly. We contrast this with a sample taken from a B+-
Tree having a similar structure to the ACE Tree depicted in
Fig. 2. The B+-Tree sampling algorithm would need to
preselect which nodes to explore. Since four leaf nodes in
the tree are needed to span the query range, there is a
reasonably high likelihood that the first four samples taken
would need to access all four leaf nodes. As the ACE Tree
Query Algorithm progresses, it goes on to retrieve the rest of
the leaf nodes in the order L4, L6, L1, L7, L2, and L8.

V PROPERTIES OF THE ACE TREE

In this section, we describe the three important properties of
the ACE Tree, which facilitate efficient retrieval of random
samples from any range query and will be instrumental in
ensuring the performance of the algorithm, as described in
algorithms.

A . COMBINABILITY
The various samples produced from processing a set of leaf
nodes are combinable. For example, consider the two leaf
nodes L1 and L3, and the query “Compute a random sample
of the records in the query range Ql=[3 to 47].”

 Fig. 5. Combining two sections of leaf nodes of the ACE tree.

As depicted in Fig. 5, first, we read leaf node L1 and filter the
second section in order to produce a random sample of size n1
from Ql, which is returned to the user. Next, we read leaf node L3
and filter its second section L3.S2 to produce a random sample of
size n2 from Ql, which is also returned to the user. At this point,
the two sets returned to the user constitute a single random
sample from Ql of size n1 þ n2. This means that as more nodes are
read from the disk, the records contained in them can be
combined to obtain an ever-increasing random sample from any
range query.

B. APPENDABILITY
The ith sections from two leaf nodes are Appendable. That is,
given two leaf nodes Lj and Lk, Lj.Si U Lk:Si is always a true
random sample of all records of the database with key values
within the range Lj.Ri U Lk.Ri. For example, reconsider the query
“Compute a random sample of the records in the query range
Ql=[3 to 47].”
As depicted in Fig. 6, we can append the third section from node
L3 to the third section from node L1 and filter the result to
produce yet another random sample from Ql. This means that
sections are never wasted.

Fig. 6. Appending two sections of leaf nodes of the ACE tree.

Mahip Bartere et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1222-1228

1225

C. EXPONENTIALITY
The ranges in a leaf node are exponential. The number of
database records that fall in L.Ri is twice the number of
records that fall in L.Ri+1. This allows the ACE Tree to
maintain the invariant that for any query Q’ over a relation R
such that at least hµ database records fall in Q’, and with
|R|/2k+1 <=|σQ’(R)| <=|R|/2k, V k<=h - 1, there exists a pair of
leaf nodes Li and Lj, where at least half of the database
records falling in Li.Rk+2 U Lj.Rk+2 are also in Q’. µ is the
average number of records in each section, and h is the
height of the tree or, equivalently, the total number of
sections in any leaf node. Although the formal statement of
the exponentiality property is a bit complicated, the net
result is simple. There is always a pair of leaf nodes whose
sections can be appended to form a set that can be filtered to
quickly obtain a sample from any range query Q’. As an
illustration, consider query Q over the ACE Tree in Fig.2.
Note that the number of database records falling in Q is
greater than 1/4 but less than half the database size. The
exponentiality property assures us that Q can be totally
covered by appending sections of two different leaf nodes.
In our example, this means that Q can be covered by
appending section 3 of nodes L4 and L6. If RC = L4R3 U
L6.R3, then by the invariant given above, we can claim that
|σQ(R)| >= (1/2) x |σRC(R)|.

VI DEVLOPMENT AND IMPLEMENTATION OF
ALGORITHM

The algorithm has been designed to meet the primary goal of
achieving “fast first” sampling from the index structure,
which means that it attempts to be greedy on the number of
records relevant for the query in the early stages of
execution. In order to meet this goal, the query answering
algorithm identifies the leaf nodes that contain the maximum
number of sections relevant for the query. A section Li1.Sj is
relevant for a range query Q if Li1.Rj U Q≠Φ, and Li1.Rj U
Li2.Rj U . . . U Lin.Rj Q, where Li1 , . . . , Lin are some leaf
nodes in the tree. The query algorithm prioritizes retrieval of
leaf nodes so as to

 facilitate the combination of sections so as to
maximize n in the above formulation and

 maximize the number of relevant sections in each
leaf node L retrieved such that L.Sj∩Q≠Φ, where j
=(c + 1) . . . h, where L.Rc is the smallest range in L
that encompasses Q.

A. ALGORITHM OVERVIEW
At a high level, the query answering algorithm retrieves the
leaf nodes that are relevant to answering a query via a series
of stabs or traversals, accessing one leaf node per stab. Each
stab begins at the root node and traverses down to a leaf. The
distinctive feature of the algorithm is that at each internal
node that is traversed during a stab, the algorithm chooses to
access the child node that was not chosen the last time that
the node was traversed. For example, imagine that for a
given internal node I, the algorithm chooses to traverse to
the left child of I during a stab. The next time that I is

accessed during a stab, the algorithm will choose to traverse to
the right child node. This can be seen in Fig. 7, where we
compare the paths taken by stabs 1 and 2.

Fig. 7. Execution runs of query answering algorithm.
(a) Stab 1, one contributing section. (b) Stab 2, six contributing sections.

(c) Stab 3,seven contributing sections. (d) Stab 4, 16 contributing
sections.

The algorithm chooses to traverse to the left child of the root
node during the first stab, whereas during the second stab, it
chooses to traverse to the right child of the root node. The
advantage of retrieving leaf nodes in this back-and forth
sequence is that it allows us to quickly retrieve a set of leaf nodes
with the most disparate sections possible in a given number of
stabs. The reason that we want a non-homogeneous set of nodes
is that nodes from very distant portions of a query range will tend
to have sections covering large ranges that do not overlap. This
allows us to append sections of newly retrieved leaf nodes with
the corresponding sections of previously retrieved leaf nodes.
The samples obtained can then be filtered and immediately
returned.
This order of retrieval is implemented by associating a bit with
each internal node that indicates whether the next child node to
be retrieved should be the left node or the right node. The value
of this bit is toggled every time the node is accessed. Fig. 7
illustrates the choices made by the algorithm at each internal
node during four separate stabs. Note that when the algorithm
reaches an internal node where the range associated with one of
the child nodes has no overlap with the query range, the
algorithm always picks the child node that has an overlap with
the query, irrespective of the value of the indicator bit. The only
exception to this is when all leaf nodes of the sub tree rooted at
an internal node that overlaps the query range have been

Mahip Bartere et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1222-1228

1226

accessed. In such a case, the internal node that overlaps the
query range is not chosen and is never accessed again.In
addition to the structure of the internal and leaf nodes of the
ACE Tree, the query algorithm uses and updates two
memory resident data structures:
1. A lookup table T. This is for storing internal node

information in the form of a pair of values (next =
[LEFT]|[RIGHT, done=[TRUE]|[FALSE]). The first
value indicates whether the next node to be retrieved
should be the left child or right child. The second value
is TRUE if all leaf nodes in the sub tree rooted at the
current node have already been accessed, else it is
FALSE.

2. An array buckets[h]. This is for holding sections of all leaf
nodes that have been accessed so far and whose records
could not be used for answering the query. h is the
height of the ACE Tree.

B. ACTUAL ALGORITHM
We now present the algorithms used for answering queries
by using the ACE Tree. Algorithm 2 simply calls Algorithm
3, which is the main tree traversal algorithm, called
Shuttle(). Each traversal or stab begins at the root node and
proceeds down to a leaf node. In each invocation of
Shuttle(), a recursive call is made to either its left or right
child with the recursion ending when it reaches a leaf node.
At this point, the sections in the leaf node are combined with
previously retrieved sections so that they can be used for
answering the query. The algorithm for combining sections
is described in Algorithm 4. This algorithm determines the
sections that are required to be combined with every new
section s that is retrieved and then searches for them in the
array buckets[]. If all sections are found, it combines them
with s and removes them from buckets[]. If it does not find
all the required sections in buckets[], it stores s in buckets[].
Algorithm 2: Query Answering Algorithm
Procedure Answer (Query Q)
Let root be the root of the ACE Tree
While (!T.lookup(root).done)
T.lookup(root).done=Shuttle(Q,root);
Algorithm 3 :ACE Tree Traversal Algorithm
Procedure Shuttle (Query Q, Node curr_node)
If(curr_node is an internal node)
left_node=curr_node→get_left_node();
right_node=curr_node→get_right_node();
If(left_node is done AND right node is done)
Mark curr_node as done
Else if(right_node is not done)
Shuttle (Q,right_node);
Else if(left_node is not done)
Shuttle (Q,left_node);
Else if (both children are not done)
If (Q overlap only with left_node.R)
Shuttle (Q,left_node);
Else if (Q overlap only with right_node.R)
Shuttle (Q,right_node);
Else // Q overlaps both sides or none
If (next node is LEFT)
Shuttle (Q,left_node);
Set next node to RIGHT;
If (next node is RIGHT)

Shuttle(Q,right_node);
Set next node to LEFT;
Else // curr_node is a leaf node
Combine_Tuples(Q,curr_node);
Mark curr_node as done
Algorithm 4: Algorithm for Combining Sections
Procedure Combine_Tuples(Query Q,LeafNode node)
For each section s in node do
 Store the section numbers required to be
Combined with s to span Q,in a list list
For each section number I in list do
If buckets does not have section i
Flag=false
If(flag== true)
Combine all sections from list with s
And use the records to answer Q
Else
Store s in the appropriate bucket

C. ALGORITHM ANALYSIS
We now present a lower bound on the expected performance of
the ACE Tree index for sampling from a relational selection
predicate. For simplicity, our analysis assumes that the number
of leaf nodes in the tree is a power of 2.
Lemma 1: Efficiency of the ACE Tree for Query Evaluation.

 Let n be the total number of leaf nodes in an ACE Tree,
which is used for sampling from some arbitrary range
query Q.

 Let p be the largest power of 2 not greater than n.
 Let _ be the mean section size in the tree.
 Let _ be the fraction of database records falling in Q.
 Let N be the size of the sample from Q that has been

obtained after m ACE Tree leaf nodes have been
retrieved from the disk.

If m is not too large (that is, if m≤ 2αn + 2), then

where E[N] denotes the expected value of N (the mean value of
N after an infinite number of trials).
Proof. Let Ii,j and Ii,j+1 be the two internal nodes in the ACE Tree,
where R = Ii,j.R U Ii,j+1.R covers Q, and i is maximized. As long
as the Shuttle algorithm has not retrieved all the children of Ii,j
and Ii,j+1 (this is the case, as long as m ≤ 2αn+2), when the mth
leaf node has been processed, the expected number of new
samples obtained is

where the outer summation is over each of the h-i contributing
sections of the leaf nodes, starting with section number i up to
section number h, whereas Σl wkl represents the fraction of
records of the 2k-1 combined sections that satisfy Q. By the
exponentiality property, Σl wkl ≥ 1/2 for every k

Mahip Bartere et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1222-1228

1227

Thus, after m leaf nodes have been obtained, the total
number of expected samples is given by

If m is a power of 2, the result is proven.
Lemma 2. The expected number of records _ in any leaf
node section is given by

where |R| is the total number of database records, h is the
height of the ACE Tree, and 2h-1 is the number of leaf nodes
in the ACE Tree.
Proof. The probability of assigning a record to any section i;
i ≤ h is 1/h.
Given that the record is assigned to section i, it can be
assigned to only one of 2i-1 leaf node groups after comparing
with the appropriate medians. Since each group would have
2h-1 / 2i-1 candidate leaf nodes, the probability that the record
is assigned to some leaf node Lj is

VII CONCLUSION

The selection of views to materialize is one of the most important
issues in designing a database. So as to achieve the best
combination of good query response where query processing
view maintenance cost should be minimized in a given storage
space constraints. The total cost, composed of different query
patterns and frequencies, were evaluated for three different view
materialization strategies. The total cost evaluated from using the
proposed materialized-views method was proved to be the
smallest among the three strategies. Further, an experiment was
conducted to record different execution times of the proposed
strategy in the computation of a fixed number of queries and
maintenance processes. Again, the proposed materialized-views
method requires the shortest total processing time.

REFERENCES

[1] Shantanu joshi and Christopher Jermaine “Materialized Sample Views For

Database Approximation” IEEE transaction on knowledge and data
engineering, march 2008..

[2] J.M. Hellerstein, P.J. Haas, and H.J. Wang, “Online Aggregation,” Proc.
ACM SIGMOD, pp. 171-182, 1997.

[3]Bin Liu And Elke A. Rundensteiner, “Optimizing Cyclic Join View
Maintenance Over Distributed Data Sources” IEEE Transactions On
Knowledge And Data Engineering, Vol. 18, No. 3, March 2006.

[4] P.S. Bradley, U.M. Fayyad, and C. Reina, “Scaling Clustering Algorithms to
Large Databases,” Proc. Third Int’l Conf. Knowledge Discovery and
Data Mining (KDD ’98), pp. 9-15, 1998.

[5]Shantanu joshi and Christopher Jermaine “Materialized Sample Views For
Database Approximation” ieee transaction on knowledge and data
engineering, march 2008

[6] J.M. Hellerstein, P.J. Haas, and H.J. Wang, “Online Aggregation,” Proc.
ACM SIGMOD, pp. 171-182, 1997.

[7]D.G. Severance and G.M. Lohman, “Differential Files: Their Application to
the Maintenance of Large Databases,” ACM Trans. Database Systems, vol.
1, no. 3, pp. 256-267, 1976.

[8]T. Scheffer and S. Wrobel, “Finding the Most Interesting Patterns in a
Database Quickly by Using Sequential Sampling,” J. Machine Learning
Research, vol. 3, pp. 833-862, 2002.

Mahip Bartere et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1222-1228

1228

