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Abstract-Sample views created from the database tables are 
useful in many applications for reducing retrieval time. A 
sample view is an indexed materialized view that permits 
efficient sampling from an arbitrary range query over the view. 
Such “sample views” are very useful in applications that 
require random samples from a database: Approximate query 
processing, online aggregation, data mining, and randomized 
algorithms are a few examples. The Appendability, 
Combinability, and Exponentiality (ACE) Tree is a new file 
organization technique that is suitable for organizing and 
indexing a sample view. One of the most important aspects of 
the ACE Tree is that it supports online random sampling from 
the view. That is, at all times, the set of records returned by the 
ACE Tree constitutes a statistically random sample of the 
database records satisfying the relational selection predicate 
over the view. 
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I  INTRODUCTION 
 
Database sampling has been recognized as an important 
problem that the International Organization for 
Standardization (ISO) has been working to develop a 
standard interface for sampling from relational database 
systems[1], and significant research efforts are directed at 
providing sampling from database systems by vendors such 
as IBM . However, despite the obvious importance of 
random sampling in a database environment and dozens of 
recent papers on the subject, there has been relatively little 
work toward actually supporting random sampling with 
physical database file organizations. The classic work in this 
area [by Olken and Rotem] suffers from drawback. With the 
ever-increasing database sizes, randomization and 
randomized algorithms[2] have become vital data 
management tools. In particular, random sampling is one of 
the most important sources of randomness for such 
algorithms. Scores of algorithms that are useful over large 
data repositories either require a randomized input ordering 
for data (i.e. an online random sample) or operate over 
samples of the data to increase the speed of the algorithm. 
For example, in online aggregation[3], database records are 
processed one at a time and are used for keeping the user 
informed of the current “best guess” as to the eventual 
answer to the query. If the records are input into the online 
aggregation algorithm in a randomized order, then it 
becomes possible to give probabilistic guarantees on the 
relationship of the current guess to the eventual answer to 
the query. Data mining algorithms like scalable K-Means[4] 
clustering and frequent item set mining are applicable only if 
the data are processed in a randomized order. In general, it is 
often possible to scale data mining and machine learning 

techniques by incorporating samples into a learned model one at 
a time until the marginal accuracy of adding an additional sample 
into the model is small. Materialized views defined over 
distributed data sources are critical for many applications to 
ensure efficient access, reliable performance, and high 
availability. This work deals with efficient optimization of query 
with the help of materialized view over the distributed network. 
Materialized views need to be maintained upon source updates 
since stale view extents may not serve well or may even mislead 
user applications. Thus, view maintenance performance is one of 
the keys to the success of these applications [5]. 
There are several benefits of Materialized View such as 
• Less writes  
• Decreased CPU consumption  
• Markedly faster response times  
• Less physical reads  
• Materialized Views offer us flexibility of basing a view on 

Primary key 
• Users, Applications, Developers and others can take advantage 

of the fact that the answer has already been stored for them.  
• Tools such as the DBMS_OLAP Package allow for easier 

maintenance.  
• In a read-only / read-intensive environment will provide 

reduced query response time and reduced resources needed 
to actually process the queries. 

 
II   PRESENT  THEORIES AND PRACTICES 

 
Database sampling has been recognized as an important problem 
that the International Organization for Standardization (ISO) has 
been working to develop a standard interface for sampling from 
relational database systems[1], and significant research efforts 
are directed at providing sampling from database systems by 
vendors such as IBM . However, despite the obvious importance 
of random sampling in a database environment and dozens of 
recent papers on the subject, there has been relatively little work 
toward actually supporting random sampling with physical 
database file organizations. The classic work in this area [by 
Olken and Rotem] suffers from drawback. With the ever-
increasing database sizes, randomization and randomized 
algorithms[2] have become vital data management tools. In 
particular, random sampling is one of the most important sources 
of randomness for such algorithms. Scores of algorithms that are 
useful over large data repositories either require a randomized 
input ordering for data (i.e. an online random sample) or operate 
over samples of the data to increase the speed of the algorithm. 
For example, in online aggregation[3], database records are 
processed one at a time and are used for keeping the user 
informed of the current “best guess” as to the eventual answer to 
the query. If the records are input into the online aggregation 
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algorithm in a randomized order, then it becomes possible to 
give probabilistic guarantees on the relationship of the 
current guess to the eventual answer to the query. Data 
mining algorithms like scalable K-Means[4] clustering and 
frequent item set mining are applicable only if the data are 
processed in a randomized order. In general, it is often 
possible to scale data mining and machine learning 
techniques by incorporating samples into a learned model 
one at a time until the marginal accuracy of adding an 
additional sample into the model is small. 
Materialized views defined over distributed data sources are 
critical for many applications to ensure efficient access, 
reliable performance, and high availability. This work deals 
with efficient optimization of query with the help of 
materialized view over the distributed network. Materialized 
views need to be maintained upon source updates since stale 
view extents may not serve well or may even mislead user 
applications. Thus, view maintenance performance is one of 
the keys to the success of these applications [5]. 
 

III   SYSTEM ARCHITECHTURE 
 
The materialized sample view can be used as a convenient 
abstraction for allowing efficient random sampling from a 
database. For example, consider the following database 
schema:  
SALE (DAY, CUST, PART, SUPP) To support fast random 
sampling from this table, and most of queries include a 
temporal range predicate on the DAY attribute. This is 
exactly the interface provided by a materialized sample 
view. A materialized sample view can be specified with the 
following SQL-like query: CREATE MATERIALIZED 
SAMPLE VIEW MyVw AS SELECT * FROM SALE 
INDEX ON DAY. 
Although the materialized sample view is a straightforward 
concept, an efficient implementation is difficult. The 
primary objective is to index data using properties 
Appendability, Combinability, and Exponentiality (ACE), 
which can be used for efficiently implementing a 
materialized sample view. The proposed work will be based 
on ACE tree traversal algorithm. The following issues will 
be considered in the dissertation work:  
1. Initially two phases will be implemented. In the first 

phase the data set is sorted based on the record key values. 
This sorted order of records is used for providing the split 
points associated with each internal node in the tree. 

2. In the second phase the data are organized into leaf nodes 
based on those key values. Disk blocks corresponding to 
groups of internal nodes can easily be constructed at the 
same time as the final pass through the data writes the leaf 
nodes to the disk. 

3. ACE trees can be extended to support the queries that 
include multidimensional predicates. K-d binary trees can 
be useful for that purpose instead of binary trees. 

4. Instead of using simple arrays for storing node 
information other data structures can be useful to improve 
the performance of overall process.  

Following flow chart shows how the execution takes place 
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Fig 1 . Architecture of system of query optimization 

During the implementation, these views have the following 
characteristics.  
1.It is possible to efficiently sample  views (without replacement) 

from any arbitrary range query over the indexed attribute at 
a rate that is far faster than is possible by using other 
techniques or by scanning a  randomly permuted file. In 
general, the view can produce samples from a predicate 
involving any attribute having a natural ordering, and a 
straightforward extension of the ACE Tree. Which  can be 
used for sampling from multidimensional predicates.  

2 .The resulting sample is online, which means that new samples 
are returned continuously as time progresses and in a manner 
such that at all times, the set of samples returned is a true 
random sample of all of the records in the view that match 
the range query. This is vital for important applications like 
online aggregation and data mining.  

3. Finally, the sample view created efficiently, requiring only two 
external sorts of the records in the view and with only a very 
small space overhead beyond the storage required for the 
data records.   

 Initially user logs in to ACE processing system. Then selects the 
node for which sample views are to be created. The selection of 
node will be from the available node list. Then user will be 
connected to the database for which DSN’s are created for that 
node. Then user gathers all the tables available in the database. 
User selects a table. After selecting table ACE shows all fields in 
the table. Then user selects number of fields on which views are 
to be created. After user selects generate sample view. Now the 
sample views are generated using ACE algorithm. After 
generating sample views user can fire query using sample views 
or without using sample views. The appropriate results will be 

Database Table 

Query  Query  Query 

ResultResult Result

Sample  Views   Sample  Views  Sample  Views 
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showed to user. The required for processing will be 
displayed to user and comparison will be carried out. 
 

IV. ACE TREE AND MATERIALIZED VIEWS 
 
We propose an entirely different strategy for implementing a 
materialized sample view. Our strategy uses a new data 
structure called the ACE Tree to index the records in the 
sample view. At the highest level, the ACE Tree partitions a 
data set into a large number of different random samples 
such that each is a random sample without replacement from 
one particular range query. When an application asks to 
sample from some arbitrary range query, the ACE Tree and 
its associated algorithms filter and combine these samples so 
that very quickly, a large and random subset of the records 
satisfying the range query is returned. The sampling 
algorithm of the ACE Tree is an online algorithm, which 
means that as time progresses, a much larger sample is 
produced by the structure. At all times, the set of records 
retrieved is a true random sample of all the database records 
matching the range selection predicate. 

 
A.  ACE TREE 
Logically, the ACE Tree is a disk-based binary tree data 
structure with internal nodes used for indexing leaf nodes, 
and leaf nodes used for storing the actual data. Since the 
internal nodes in a binary tree are much smaller than disk 
pages, they are packed and stored together in disk-page sized 
units [19]. Each internal node has the following components: 
1. A range R of key values associated with the node. 
2. A key value k that splits R and partitions the data on the 
left and right of the node. 
3. Pointers ptrl and ptrr, which point to the left and right 
children of the node. 
4. Counts cntl and cntr, which give the number of database 
records falling in the ranges associated with the left and right 
child nodes. These values can be used during the evaluation 
of online aggregation queries, which require the size of the 
population from which we are sampling[4]. 
Fig. 2 shows the logical structure of the ACE Tree. Ii;j refers 
to the jth internal node at level i. The root node is labeled 
with a range I1,1.R =[0 – 100], signifying that all records in 
the data set have key values within this range. The key of the 
root node partitions I1,1.R into I2,1.R=[0–50] and I2,2.R=[51 – 
100]. Similarly, each internal node divides the range of its 
descendents with its own key. 
The ranges associated with each section of a leaf node are 
determined by the ranges associated with each internal node 
on the path from the root node to the leaf. For example, if we 
consider the path from the root node down to leaf node L4, 
the ranges that we encounter along the path are 0-100, 0-50, 
26-50, and 38-50. 
Thus, for L4, L4:S1 has a random sample of records in the 
range 0-100, L4:S2 has a random sample in the range 0-50, 
L4:S3 has a random sample in the range 26-50, whereas 
L4:S4 has a random sample in the range 38-50. 
 

 

Fig 2 Structure of ACE Tree 
B. EXAMPLE OF ACE TREE 
In the following discussion, we demonstrate how the ACE Tree 
efficiently retrieves a large random sample of records for any 
given range query. The query algorithm is formally described in 
next section.  
Let Q =[30 - 65] be our example query postulated over the ACE 
Tree depicted in Fig. 2. The query algorithm starts at I1,1, which 
is the root node. Since I2,1.R overlaps Q, the algorithm decides to 
explore the left child node labeled I2,1 in Fig. 2. At this point, the 
two range values associated with the left and right children of I2,1 
are 0-25 and 26-50. Since the left child range has no overlap with 
the query range, the algorithm chooses to explore the right child 
next. At this child node I3,2, the algorithm picks leaf node L3 to 
be the first leaf node retrieved by the index. Records from section 
1 of L3 (which totally encompasses Q) are filtered for Q and 
returned immediately to the consumer of the sample as a random 
sample from the range [30-65], whereas records from sections 2, 
3, and 4 are stored in memory. Fig. 3 shows the one random 
sample from section 1 of L3, which can be used directly for 
answering query Q.  
Next, the algorithm again starts at the root node and now chooses 
to explore the right child node I2,2. After performing range 
comparisons, it explores the left child of I2,2, which is I3,3, since 
I3,4.R has no overlap with Q. The algorithm chooses to visit the 
left child node of I3,3 next, which is leaf node L5. This is the 
second leaf node to be retrieved.  

 

Fig.3 Random samples from section 1 of L3. 
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As depicted in Fig. 4, since L5.R1 encompasses Q, the 
records of L5.S1 are filtered and returned immediately to the 
user as two additional samples from R. Furthermore, section 
2 records are combined with the section 2 records of L3 to 
obtain a random sample of records in the range 0-100. 
 

 
Fig.  4.  Combining samples from L3 and L5. 

 

These are again filtered and returned, giving four more 
samples from Q. Section 3 records are also combined with 
the section 3 records of L3 to obtain a sample of records in 
the range 26-75. Since this range also encompasses R, the 
records are again filtered and returned, adding four more 
records to our sample. Finally, section 4 records are stored in 
memory for later use. Note that after retrieving just two leaf 
nodes in our small example, the algorithm obtains 11 
randomly selected records from the query range. However, 
in a real index, this number would be many times greater. 
Thus, the ACE Tree supports “fast first” sampling from a 
range predicate: a large number of samples are returned very 
quickly. We contrast this with a sample taken from a B+-
Tree having a similar structure to the ACE Tree depicted in 
Fig. 2. The B+-Tree sampling algorithm would need to 
preselect which nodes to explore. Since four leaf nodes in 
the tree are needed to span the query range, there is a 
reasonably high likelihood that the first four samples taken 
would need to access all four leaf nodes. As the ACE Tree 
Query Algorithm progresses, it goes on to retrieve the rest of 
the leaf nodes in the order L4, L6, L1, L7, L2, and L8. 
 

V  PROPERTIES OF THE ACE  TREE 
 
In this section, we describe the three important properties of 
the ACE Tree, which facilitate efficient retrieval of random 
samples from any range query and will be instrumental in 
ensuring the performance of the algorithm, as described in 
algorithms. 
 
A . COMBINABILITY 
The various samples produced from processing a set of leaf 
nodes are combinable. For example, consider the two leaf 
nodes L1 and L3, and the query “Compute a random sample 
of the records in the query range Ql=[3 to 47].”  

 

  Fig. 5. Combining   two  sections of leaf nodes of the ACE tree. 

 

As depicted in Fig. 5, first, we read leaf node L1 and filter the 
second section in order to produce a random sample of size n1 
from Ql, which is returned to the user. Next, we read leaf node L3 
and filter its second section L3.S2 to produce a random sample of 
size n2 from Ql, which is also returned to the user. At this point, 
the two sets returned to the user constitute a single random 
sample from Ql of size n1 þ n2. This means that as more nodes are 
read from the disk, the records contained in them can be 
combined to obtain an ever-increasing random sample from any 
range query. 
 
B.   APPENDABILITY 
The ith sections from two leaf nodes are Appendable. That is, 
given two leaf nodes Lj and Lk, Lj.Si U Lk:Si is always a true 
random sample of all records of the database with key values 
within the range Lj.Ri U Lk.Ri. For example, reconsider the query 
“Compute a random sample of the records in the query range 
Ql=[3 to 47].”  
As depicted in Fig. 6, we can append the third section from node 
L3 to the third section from node L1 and filter the result to 
produce yet another random sample from Ql. This means that 
sections are never wasted. 
 

 
 

Fig. 6. Appending   two  sections of leaf nodes of the ACE tree. 
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C.  EXPONENTIALITY 
The ranges in a leaf node are exponential. The number of 
database records that fall in L.Ri is twice the number of 
records that fall in L.Ri+1. This allows the ACE Tree to 
maintain the invariant that for any query Q’ over a relation R 
such that at least hµ database records fall in Q’, and with 
|R|/2k+1 <=|σQ’(R)| <=|R|/2k, V k<=h - 1, there exists a pair of 
leaf nodes Li and Lj, where at least half of the database 
records falling in Li.Rk+2 U Lj.Rk+2 are also in Q’. µ is the 
average number of records in each section, and h is the 
height of the tree or, equivalently, the total number of 
sections in any leaf node. Although the formal statement of 
the exponentiality property is a bit complicated, the net 
result is simple. There is always a pair of leaf nodes whose 
sections can be appended to form a set that can be filtered to 
quickly obtain a sample from any range query Q’. As an 
illustration, consider query Q over the ACE Tree in Fig.2. 
Note that the number of database records falling in Q is 
greater than 1/4 but less than half the database size. The 
exponentiality property assures us that Q can be totally 
covered by appending sections of two different leaf nodes. 
In our example, this means that Q can be covered by 
appending section 3 of nodes L4 and L6. If RC = L4R3 U 
L6.R3, then by the invariant given above, we can claim that 
|σQ(R)| >= (1/2) x |σRC(R)|. 
 

VI  DEVLOPMENT AND IMPLEMENTATION OF 
ALGORITHM 

 
The algorithm has been designed to meet the primary goal of 
achieving “fast first” sampling from the index structure, 
which means that it attempts to be greedy on the number of 
records relevant for the query in the early stages of 
execution. In order to meet this goal, the query answering 
algorithm identifies the leaf nodes that contain the maximum 
number of sections relevant for the query. A section Li1.Sj is 
relevant for a range query Q if Li1.Rj U Q≠Φ, and Li1.Rj U 
Li2.Rj U . . . U Lin.Rj     Q, where Li1 , . . . , Lin are some leaf 
nodes in the tree. The query algorithm prioritizes retrieval of 
leaf nodes so as to 

 facilitate the combination of sections so as to 
maximize n in the above formulation and 

 maximize the number of relevant sections in each 
leaf node L retrieved such that L.Sj∩Q≠Φ, where j 
=(c + 1) . . . h, where L.Rc is the smallest range in L 
that encompasses Q. 

 
A.  ALGORITHM OVERVIEW 
At a high level, the query answering algorithm retrieves the 
leaf nodes that are relevant to answering a query via a series 
of stabs or traversals, accessing one leaf node per stab. Each 
stab begins at the root node and traverses down to a leaf. The 
distinctive feature of the algorithm is that at each internal 
node that is traversed during a stab, the algorithm chooses to 
access the child node that was not chosen the last time that 
the node was traversed. For example, imagine that for a 
given internal node I, the algorithm chooses to traverse to 
the left child of I during a stab. The next time that I is 

accessed during a stab, the algorithm will choose to traverse to 
the right child node. This can be seen in Fig. 7, where we 
compare the paths taken by stabs 1 and 2. 
 

 
 

 

Fig. 7. Execution runs of query answering algorithm. 
(a) Stab 1, one contributing section. (b) Stab 2, six contributing sections. 

(c) Stab 3,seven contributing sections. (d) Stab 4, 16 contributing 
sections. 

 
The algorithm chooses to traverse to the left child of the root 
node during the first stab, whereas during the second stab, it 
chooses to traverse to the right child of the root node. The 
advantage of retrieving leaf nodes in this back-and forth 
sequence is that it allows us to quickly retrieve a set of leaf nodes 
with the most disparate sections possible in a given number of 
stabs. The reason that we want a non-homogeneous set of nodes 
is that nodes from very distant portions of a query range will tend 
to have sections covering large ranges that do not overlap. This 
allows us to append sections of newly retrieved leaf nodes with 
the corresponding sections of previously retrieved leaf nodes. 
The samples obtained can then be filtered and immediately 
returned.  
This order of retrieval is implemented by associating a bit with 
each internal node that indicates whether the next child node to 
be retrieved should be the left node or the right node. The value 
of this bit is toggled every time the node is accessed. Fig. 7 
illustrates the choices made by the algorithm at each internal 
node during four separate stabs. Note that when the algorithm 
reaches an internal node where the range associated with one of 
the child nodes has no overlap with the query range, the 
algorithm always picks the child node that has an overlap with 
the query, irrespective of the value of the indicator bit. The only 
exception to this is when all leaf nodes of the sub tree rooted at 
an internal node that overlaps the query range have been 
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accessed. In such a case, the internal node that overlaps the 
query range is not chosen and is never accessed again.In 
addition to the structure of the internal and leaf nodes of the 
ACE Tree, the query algorithm uses and updates two 
memory resident data structures: 
1. A lookup table T. This is for storing internal node 

information in the form of a pair of values (next = 
[LEFT]|[RIGHT, done=[TRUE]|[FALSE]). The first 
value indicates whether the next node to be retrieved 
should be the left child or right child. The second value 
is TRUE if all leaf nodes in the sub tree rooted at the 
current node have already been accessed, else it is 
FALSE. 

2. An array buckets[h]. This is for holding sections of all leaf 
nodes that have been accessed so far and whose records 
could not be used for answering the query. h is the 
height of the ACE Tree. 

 
B.  ACTUAL ALGORITHM 
We now present the algorithms used for answering queries 
by using the ACE Tree. Algorithm 2 simply calls Algorithm 
3, which is the main tree traversal algorithm, called 
Shuttle(). Each traversal or stab begins at the root node and 
proceeds down to a leaf node. In each invocation of 
Shuttle(), a recursive call is made to either its left or right 
child with the recursion ending when it reaches a leaf node. 
At this point, the sections in the leaf node are combined with 
previously retrieved sections so that they can be used for 
answering the query. The algorithm for combining sections 
is described in Algorithm 4. This algorithm determines the 
sections that are required to be combined with every new 
section s that is retrieved and then searches for them in the 
array buckets[]. If all sections are found, it combines them 
with s and removes them from buckets[]. If it does not find 
all the required sections in buckets[], it stores s in buckets[]. 
Algorithm 2: Query Answering Algorithm 
Procedure Answer (Query Q) 
Let root be the root of the ACE Tree 
While (!T.lookup(root).done) 
T.lookup(root).done=Shuttle(Q,root); 
Algorithm 3 :ACE Tree Traversal Algorithm 
Procedure Shuttle (Query Q, Node  curr_node) 
If(curr_node is an internal node) 
left_node=curr_node→get_left_node(); 
right_node=curr_node→get_right_node(); 
If(left_node is done AND right node is done) 
Mark curr_node as done 
Else if(right_node is not done) 
Shuttle (Q,right_node); 
Else if(left_node is not done) 
Shuttle (Q,left_node); 
Else if (both children are not done) 
If (Q overlap only with left_node.R) 
Shuttle (Q,left_node); 
Else if  (Q overlap only with right_node.R) 
Shuttle (Q,right_node); 
Else // Q overlaps both sides or none 
If (next node is LEFT) 
Shuttle (Q,left_node); 
Set next node to RIGHT; 
If (next node is RIGHT) 

Shuttle(Q,right_node); 
Set next node to LEFT; 
Else // curr_node is a leaf node  
Combine_Tuples(Q,curr_node); 
Mark curr_node as done 
Algorithm 4: Algorithm for Combining Sections 
Procedure Combine_Tuples(Query Q,LeafNode node) 
For each section s in node do 
 Store the section numbers required to be  
Combined with s to span Q,in a list list 
For each section number I in list do 
If buckets does not have section i 
Flag=false 
If(flag== true) 
Combine all sections from list with s 
And use the records to answer Q 
Else 
Store s in the appropriate bucket 
 
C.  ALGORITHM ANALYSIS 
We now present a lower bound on the expected performance of 
the ACE Tree index for sampling from a relational selection 
predicate. For simplicity, our analysis assumes that the number 
of leaf nodes in the tree is a power of 2.  
Lemma 1: Efficiency of the ACE Tree for Query Evaluation. 

 Let n be the total number of leaf nodes in an ACE Tree, 
which is used for sampling from some arbitrary range 
query Q. 

 Let p be the largest power of 2 not greater than n. 
 Let _ be the mean section size in the tree. 
 Let _ be the fraction of database records falling in Q. 
 Let N be the size of the sample from Q that has been 

obtained after m ACE Tree leaf nodes have been 
retrieved from the disk. 

If m is not too large (that is, if m≤ 2αn + 2), then 

 
where E[N] denotes the expected value of N (the mean value of 
N after an infinite number of trials). 
Proof. Let Ii,j and Ii,j+1 be the two internal nodes in the ACE Tree, 
where R = Ii,j.R U Ii,j+1.R covers Q, and i is maximized. As long 
as the Shuttle algorithm has not retrieved all the children of Ii,j 
and Ii,j+1 (this is the case, as long as m ≤ 2αn+2), when the mth 
leaf node has been processed, the expected number of new 
samples obtained is 

 
 

where the outer summation is over each of the h-i contributing 
sections of the leaf nodes, starting with section number i up to 
section number h, whereas Σl wkl represents the fraction of 
records of the 2k-1 combined sections that satisfy Q. By the 
exponentiality   property,  Σl wkl ≥ 1/2 for every k 
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Thus, after m leaf nodes have been obtained, the total 
number of expected samples is given by 

 
 

If m is a power of 2, the result is proven. 
Lemma  2. The expected number of records _ in any leaf 
node section is given by 

 
 

where |R| is the total number of database records, h is the 
height of the ACE Tree, and 2h-1 is the number of leaf nodes 
in the ACE Tree. 
Proof. The probability of assigning a record to any section i;  
i ≤ h is 1/h.  
Given that the record is assigned to section i, it can be 
assigned to only one of 2i-1 leaf node groups after comparing 
with the appropriate medians. Since each group would have 
2h-1 / 2i-1 candidate leaf nodes, the probability that the record 
is assigned to some leaf node Lj is 

 
   

VII  CONCLUSION 
 

The selection of views to materialize is one of the most important 
issues in designing a database. So as to achieve the best 
combination of good query response where query processing 
view maintenance cost should be minimized in a given storage 
space constraints.  The total cost, composed of different query 
patterns and frequencies, were evaluated for three different view 
materialization strategies. The total cost evaluated from using the 
proposed materialized-views method was proved to be the 
smallest among the three strategies. Further, an experiment was 
conducted to record different execution times of the proposed 
strategy in the computation of a fixed number of queries and 
maintenance processes. Again, the proposed materialized-views 
method requires the shortest total processing time. 
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